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Introduction

» Airlock provides a bigger
doorway to space on the ISS
— Increase payload deployment

volume by 5x over JAXA Kibo
module

— Deploy cubesats, smallsats, and
scientific instruments NanoRacks

Airlock WL y
— Permanent commercial module on
ISS

— May be relocated to commercial
space station after ISS retirement

— Scheduled for launch in 2019 on
SpaceX Falcon 9/Dragon

Airlk on Port Side of Node 3
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Airlock Requirements

 NanoRacks and ATA worked with NASA, ISS, Boeing to
define and maintain all IRB thermal requirements and
temperature limits for various launch and on-orbit phases

e |RB defines:

— Analysis parameters and load cases to consider

— Temperature limits (e.g. to preclude condensation)
— Heat transfer limits to ISS

— Human safety factors (e.g. touch temperature limits)
— IMV airflow parameters and air velocity limits



& Temperature Limits Per Mission Phase NF

ANALYSIS WORKSHOP

 Dragon Free-Flight
— Material and Non-Op limits
e Dragon Trunk on Node 2 and Transfer to Node 3
— External Touch Temperature limits
e On SSRMS at Node 3 Pre-Berthed
— PCBM and ACBM mating limits
 Node 3 Berthed and Unpressurized
— Condensation and Touch Temperature limits
 Berthed and Pressurized on Node 3
— On-Orbit Survival during Planned 6-hour Power Outage
« SSRMS Payload Deployment Operations
— Touch Temperature limits



Airlock Design

ANALYSIS WORKSHOP

. Bell jar design

—  Primary structure
» Passive common berthing mechanism (PCBM) — standard, flight-proven hardware
» Pressure shell — provides habitable environment
* Launch vehicle flight support equipment (FSE) — designed and built by SpaceX
» Power and video grapple fixture (PVGF) — interface to ISS Space Station Remote Manipulator System (SSRMS)
— Secondary structure
* Internal outfitting (e.g. seat tracks, avionics support structure)
* Micrometeoroid orbital debris (MMOD) shielding
* IVA/EVA handrails and mounts
» Payload support structure and GOLD-2 Connectors
Thermal control system (TCS)
— Passive thermal mechanisms
»  Multilayer insulation (MLI) beneath MMOD
» Coatings
— Active thermal mechanisms

*  Shell heaters
«  Air ventilation while berthed to Node 3 via Intermodular ventilation (IMV) Stainless Steel

—  Discharge and return diffusers for ventilation . .
. Aluminum (Various
. : 3 P e Alloys)

Clips and Bolts used between
MMOD and Pressure Shell

Aluminum
(Various Alloys)
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Airlock CAD Airlock CAD (MMOD Not Visible)



Airlock Thermal Model

Antenna MMOD w/
MLI
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Simplified thermal model
— 500 nodes

— 300+ cases assessed
PVGF ~T - Different phases
GOLD-2 * YPR attitudes and articulating joints
» Beta angles: 75° to -75°
» Design iterations
— Integration with vendor-provided
models

Modeling assumptions

— Hot = 450 BTU/hr ft? solar, 81
BTU/hr ft? earth IR, 0.4 albedo, EOL
surface properties

— Cold =419 BTU/hr ft? solar, 65
BTU/hr ft? earth IR, 0.2 albedo, BOL
surface properties

Handrall

7 Pressure Shell

Frame
FSE

PCBM

Airlock Thermal Desktop Simplified Model




. Density, Specific Heat, Conductivity,
Material Name kg/m? J/kg/K W/m/K
AL (Varied) 2770. 921.6 121-173
Stainless Steel 8030. 504. 16.3

Al, Anodize

Material Name Absorptivity Emissivity
AL, Anodized (Varying) 0.350 - 0.760 0.820 - 0.880
Betacloth 0.400 0.600
Nickel Plated 0.440 0.120
Stainless Steel 0.470 0.140

d
N

Vendor-Provided
(a~0.8, €~0.8)

Airlock Thermal Desktop Simplified Model



& Airlock Thermal Analysis Approach  (&&

e Heaters

— Thermostatically controlled shell
heaters with fault tolerance

— 80% heater duty cycle

— Heaters placed in regions of
maximum heat leakage currently

» Most leakage occurs near PCBM
and PVGF

 Need to be refined via detailed
model

— 800 W of total heater power

» Sized to survive and maintain
components during worst case
cold environments and non-op 6-

Airlock Thermal Desktop Model
hOUf COO|dOWﬂ with MMOD Shield removed and

Heater circuits visible




* Vendor-provided components like Antenna and PVGF
have slight exceedances on the cold side
— Mitigate through component TVAC testing

Dragon Free-Flight Thermal Dragon Free-Flight Temperature

Contour Showing Antenna

Desktop Model Exceedance on Cold Side
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considered

— Node 2 Nadir
 No exceedances
» Best option

— Node 2 Forward
¢ Some exceedances for antenna
* Bounded by dragon free-flight

— Node 2 Zenith
 Numerous exceedances

T (PVGF Op Temp Limit:
-94°F)

Dragon Berthed on Node 2 Dragon Berthed on Node 2

Thermal Deskiop Models Temperature Contours
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& Airlock Design — Airlock on Node 3 N%SA
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* When berthed on Node 3, Airlock acts like a radiator

— Radiator Area >100 ft2

— Minimize heater power required to meet condensation temperature requirements
for internal components

» Also minimize heater power for 6 hour cooldown requirement
— Potential design solutions

* Lower MMOD a/g ratio

» Black anodized aluminum/betacloth for MMOD stovepipe

 Reduce MLI €* from 0.03

e Increase thermal isolation between MMOD and Pressure shell since most
heat loss is conductive — this is the most robust solution

« Add thermal isolation to PVGF interface
— Heater requirements
* 80% duty cycle
» Place heaters in regions with greatest conductive loss

&
\
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Airlock Berthed on Node 3
Thermal Deskiop Model
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;6@ Airlock DESign - Airlock on Node 3 NGA:;A

o Other power sources

— Auvionics
e 200 W dissipation Avionics Boxes
 Still in development |
* Only used for hot case

— IMV

e 100 W heat flow from air ducts

— Calculated from CFD on next
slide

» Not used for cold/hot case
predictions for conservatism

IMV Inlet and Bulk Air

Airlock Thermal Desktop Model
with MMOD Shield, Avionics, and
IMV Visible
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e« CFD performed on Node 3 with 4 avionics boxes
and detailed IMV ducts

— Estimated bulk heat transfer coefficients for
use in Thermal Desktop
= q
T .. -T

Avionics 4
Avionics 1

Avionics Box

IMV Inlet Port

exit

surf

— Demonstrated volume of stagnant air < 5% per
NASA requirements
=" — STAR-CCM+ solver with SST turbulence
model and average Y+ = 2.25
— Boundary Conditions
e [IMV Inlet with varying CFM (Closed or
Open Hatch), Boundary Temperature, P =
1 atm
* Pressure outlet with Boundary
Temperature, P = 1 atm; Hatch open or
closed

e Constant heat flux on wall boundaries
(except IMV duct walls)

33333

Velocity and Temperature Gradients with Hatch
Closed (Left) and Open (Right)
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 There are minimal temperature exceedances during
payload deployment

— During certain off-nominal attitudes, sun has direct view to
iInternal components
« Will be mitigated to limit operations during extreme orbital conditions

— Antenna and handrail have slight exceedances on cold side
during some nominal +XVV orbits

« Mitigate through testing

i1 B
el

SSRMS Payload Deployment
SSRMS Payload Deployment Thermal Desktop Model (SSRMS
CAD not used in analysis)
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DR, Airlock Thermal Testing Approach NFS‘A

« Antenna Unit-Level Thermal Testing

— PQ thermal testing at ambient and vacuum pressure with 16 and
4 cycles respectively to demonstrate integrity

— 5°C (9°F) margin and 11°C (20°F) uncertainty

— Critical component that far exceeds current design limits

— Designed with guidance from MIL-STD-1540E
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Future Design Work

Detailed heater layouts
— 6-hour cooldown requirement
— Double fault tolerance

SpaceX detailed dragon
model integration

Development of detailed

model

— 10k nodes

— Analyzed for worst case
attitudes and beta angles

Complete suite of analyses

to demonstrate compliance

with ISS IRB

Airlock Detailed Thermal Desktop
Model (Under Development)
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